博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop-Drill深度剖析
阅读量:6786 次
发布时间:2019-06-26

本文共 4030 字,大约阅读时间需要 13 分钟。

1.概述

  在《》一文当中,笔者给大家介绍如何去处理实时查询这样的业务场景,也是简略的提了一下如何去实时查询HDFS,然起相关细节并未说明。今天给大家细说一下相关细节,其中包含:HDFS,Hive以及HBase等内容。

2.数据源和文件格式

  在使用Drill去做实时查询,由于其只是一个中间件,其适配的存储介质是有限制的,目前官方支持以下存储介质:

  • FS
  • HDFS
  • HBase
  • Hive
  • RDBMS
  • MongoDB
  • MapR-DB
  • S3

  这里笔者主要给大家介绍HDFS,Hive,HBase这三种介质。另外,Drill支持以下输入格式的数据源:

  • Avro
  • CSV
  • TSV
  • PSV
  • Parquet
  • MapR-DB*
  • Hadoop Sequence Files

2.1 文本类型文件(CSV,TSV,PSV)

  下面笔者给大家介绍文本类型的相关细节,文本类型的使用,有其固定的使用方法,通用配置如下:

"formats": {    "csv": {      "type": "text",      "extensions": [        "txt"      ],      "delimiter": "\t"    },    "tsv": {      "type": "text",      "extensions": [        "tsv"      ],      "delimiter": "\t"    },    "parquet": {      "type": "parquet"    }  }

  这里以CSV为例子来说明:

  • "csv":表示固定的文本格式
  • "type":制定文件的类型,这里指定为文本类型
  • "extensions":扩展名为csv
  • "delimiter":文本内容,每行的分隔符为一个tab占位符

  上面的配置,这里我们也可以进行拓展,比如我们的HDFS上的文件格式如下图所示:

  我们要达到以下查询结果,内容如下所示:

0: jdbc:drill:zk=local> SELECT * FROM hdfs.`/tmp/csv_with_header.csv2`;+------------------------+|        columns         |+------------------------+| ["hello","1","2","3"]  || ["hello","1","2","3"]  || ["hello","1","2","3"]  || ["hello","1","2","3"]  || ["hello","1","2","3"]  || ["hello","1","2","3"]  || ["hello","1","2","3"]  |+------------------------+

  那么,我们可以对其做以下配置,内容如下所示:

"csv": {  "type": "text",  "extensions": [    "csv2"  ],  "skipFirstLine": true,  "delimiter": ","},

  这里skipFirstLine这个属性表示忽略一行结果。

  另外,同样用到上面的数据源,我们要实现以下查询结果,内容如下所示:

0: jdbc:drill:zk=local> SELECT * FROM hdfs.`/tmp/csv_with_header.csv2`;+-------+------+------+------+| name  | num1 | num2 | num3 |+-------+------+------+------+| hello |   1  |   2  |   3  || hello |   1  |   2  |   3  || hello |   1  |   2  |   3  || hello |   1  |   2  |   3  || hello |   1  |   2  |   3  || hello |   1  |   2  |   3  || hello |   1  |   2  |   3  |+-------+------+------+------+

  这该如何去修改CSV的属性,我们添加以下内容即可:

"csv": {  "type": "text",  "extensions": [    "csv2"  ],  "skipFirstLine": false,  "extractHeader": true,  "delimiter": ","},

  从单词的意义上可以很直接的读懂属性所要表达的意思,这里就不多做赘述了。由于篇幅问题,这里就不一一列举了。

  其他格式文件与此类似,填写指定文件格式,文件类型,扩展名,文本分隔符即可,其他扩展属性可按需添加。

3.Plugins

3.1 HDFS

  集成HDFS的Plugins,添加内容如下所示:

{  "type": "file",  "enabled": true,  "connection": "hdfs://hdfs.company.com:9000/",  "workspaces": {    "root": {      "location": "/opt/drill",      "writable": true,      "defaultInputFormat": null    }  },  "formats": {    "csv": {      "type": "text",      "extensions": [        "txt"      ],      "delimiter": "\t"    },    "tsv": {      "type": "text",      "extensions": [        "tsv"      ],      "delimiter": "\t"    },    "parquet": {      "type": "parquet"    }  }}

  PS:连接HDFS地址注意要正确。

3.2 Hive

  集成Hive的Plugins,添加内容如下所示:

{  "type": "hive",  "enabled": true,  "configProps": {    "hive.metastore.uris": "thrift://hdfs.company.com:9083",    "fs.default.name": "hdfs://hdfs.company.com/",    "hive.metastore.sasl.enabled": "false"  }}

  PS:这里需要指定Hive的metastore的thrift地址,同时也需要指定hdfs的地址。另外,我们需要启动metastore的thrift服务,命令如下所示:

hive --service metastore

   这里需要注意的是,Drill当前不支持写操作到Hive表,在将Hive表结构中的数据类型做查询映射时,支持以下类型:

支持的SQL类型 Hive类型
BIGINT BIGINT
BOOLEAN BOOLEAN
VARCHAR CHAR
DATE DATE
DECIMAL* DECIMAL
FLOAT FLOAT
DOUBLE DOUBLE
INTEGER INT,TINYINT,SMALLINT
INTERVAL N/A
TIME N/A
N/A TIMESPAMP  (unix的系统时间)
TIMESPAMP TIMESPAMP  (JDBC时间格式:yyyy-mm-dd hh:mm:ss)
None STRING
VARCHAR VARCHAR
VARBINARY BINARY

  另外,在Drill中,不支持以下Hive类型:

  • LIST
  • MAP
  • STRUCT
  • TIMESTAMP(Unix Epoch format)
  • UNION

3.3 HBase

  集成HBase的Plugins,添加内容如下所示:

{  "type": "hbase",  "config": {    "hbase.zookeeper.quorum": "hbase-zk01,hbase-zk02,hbase-zk03",    "hbase.zookeeper.property.clientPort": "2181"  },  "size.calculator.enabled": false,  "enabled": true}

  PS:在使用ZooKeeper集群连接信息时,需要注意的是,Drill在解析HBase的Plugins时,会解析其HBase集群上的 ZK集群信息,如:在HBase集群中的ZK信息配置使用的时域名,这里在配置其HBase的Plugins的ZK连接信息也需使用对应的域名,若是直接 填写IP,解析会失败。保证解析的一致性。

4.总结

  另外,在使用JDBC或ODBC去操作Drill的时候,连接信息的使用是需要注意的,直接按照官方给出的连接方式硬套是有问题的,这里我们修 改以下连接信息。连接分2种情况,一种指定其Drill的IP和PORT,第二种,使用ZK的连接方式,如 jdbc:drill:zk=dn1,dn2,dn3:2181即可。

5.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

转载地址:http://jucgo.baihongyu.com/

你可能感兴趣的文章
java 通过ssh 执行命令
查看>>
算法导论——基数排序(基于计数排序)
查看>>
19.TCP的交互数据流
查看>>
字符串匹配的Boyer-Moore算法
查看>>
memcached数据库未授权访问漏洞解决
查看>>
centos 7 安装在vmware Workstation的网卡问题 RHEL7
查看>>
嵌入式开发平台-iTOP-4418开发板
查看>>
我的友情链接
查看>>
ssh配置公钥私钥(key)登录SecureCRT
查看>>
go 字符串长度为空的判断 效率
查看>>
openstack安装(liberty)--安装认证服务(Identity service)
查看>>
邮件服务器软件为企业分支“搭桥”
查看>>
Windows Azure之VM的迁移之旅
查看>>
DevOps系列——Gogs和Jenkins的CI配置
查看>>
ExtJS4.2学习(php版)
查看>>
负载均衡——HAProxy
查看>>
win7 访问本机的虚拟机中centos的web项目
查看>>
批处理之播放文本文件
查看>>
windows server 2008活动目录的备份与还原
查看>>
spring boot 2.0.1.RELEASE hibernate 缓存 ehcache 详解
查看>>